UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

PROBLEMS OF PHYSICAL CHEMISTRY

2018-2019

LESSON 4

- **10.** The vapour pressures at 7 °C of pure A and B are 100 and 1000 mmHg respectively. For an ideal solution formed by A and B in equimolar quantities and 27 oC want to know:
 - a) the vapour pressure of the solution
 - **b)** vapour composition

Data:
$$\Delta \overline{H}_{\text{vap,A}} = 400 \text{ cal·mol}^{-1}; \Delta \overline{H}_{\text{vap,B}} = 280 \text{ cal·mol}^{-1}$$

 $R = 0.082 \text{ l·atm·K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal·K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

11. The following table show the values of solutions of acetone-chloroform at $32.5 \,^{\circ}$ C.

X ^{liq} (HCCl3)	P _(HCCl3) /(mm Hg)	P _(C3H6O) / (mmHg)
0.000	-	344.5
0.059	9.200	323.2
0.080	12.700	-
0.100	16.200	-
0.123	20.400	299.3
0.185	31.9	275.4

Calculate for a solution of $x_{HCCL_3}^L = 0.123$ at 32.5 °C:

- a) The activity coefficients of acetone and chloroform according to convention I
- **b)** The activity coefficients of acetone and chloroform according to convention II, considering acetone the solvent.

12.- Calculate the mean ionic activity of a 0.001 molal aqueous solution of magnesium nitrate

Datos: A = 0.509